设置

关灯

第九十八夜 非线性应用(第2/4页)

    层面上,我们或许有很大的自由决定不远未来发生的事,而在一个粗粒度的、更为宏大的层面上,生命的确定性可能超出我们的想象。

    “社会物理学”一词一度逐渐退出了科学舞台,最近又被来自不同背景的科学家“复活”,他们开始用更为定量分析的观点来解决社会科学问题,通常与传统物理学的范式框架相互关联。

    社会物理学是基于大数据分析理解人类行为的一种全新方式。尽管这一研究领域很令人感兴趣,但可以肯定地说,不会有物理学家把它称作“物理学”,主要原因是它并不聚焦于基本原理、普遍法则、数学分析和机制阐释。

    凯特勒的BMI被定义为体重除以身高的平方,因此,该指数的单位是磅/平方英尺或千克/平方米。

    BMI背后的观点是,健康个体,尤其是那些拥有正常体形和正常体脂率的人的体重被认为与身高的平方存在比例关系。

    因此,用体重除以身高的平方应该会得到一个数值,所有健康个体的这一数值大体相同,它只会在一个相对狭窄的范围(18.5~25千克/平方米)内变动。

    超出此范围被认为是与体重相对身高过重或过轻有关的这种潜在健康问题的表现。

    因此,BMI被认为是理想的健康个体人群中的相似不变量,这意味着无论体重和身高如何,这一数值基本不会发生变化。

    然而,它也意味着体重应该随着身高平方的增长而增长,这似乎与我们此前有关伽利略理论的讨论严重不符,根据伽利略的研究,我们得到的结论是体重应该增长得更快,与身高的立方成正比。

    如此一来,BMI就不应该是一个不变量,而是应该随着身高的变化而呈线性变化的,因此高个子就会被过度诊断为超重,而矮个子的体重则会被低估。

    的确,有证据表明,与高个子的真实体脂率相比,矮个子拥有不寻常的更高值。

    那么,对人类而言,体重事实上是如何随身高发生比例变化的呢?

    不同的数据统计分析指向了不同的结论,包括对立方定律的确认到最近的分析认为,指数为2.7,或数值更小,接近2。

    为了了解其中的可能原因,我们还必须提醒自己在推导出立方定律时的一个重要假设,即在尺寸增长时,系统的形状(在这里指的是我们的身形)应该保持不变。

    然而,人类的身形会随着年龄的变化而发生变化,从婴儿的极端情况——大脑袋、粗短的四肢,到发育成熟、比例匀称的成年人,再到像我这般年龄的人的松垂身形。

    此外,身形还取决于性别、文化和其他社会经济因素,它们可能会也可能不会与健康和肥胖存在联系。

    许多年前,我分析了男性和女性的身高作为他们体重函数的数据,并得到了与经典的立方定律相同的结论。我后来偶然发现,我分析的数据来自50~59岁美国男性和40~49岁美国女性的相对狭窄范围。

    因为这些数据是分性别分析的,而且使用的是相对狭窄的年龄组别,这些分析对象总体便代表了拥有相似特性的普通健康男性和女性。

    具有讽刺意味的是,这与其他更加严肃、更加复杂的研究形成了鲜明对比,后者是对特性不同的所有年龄群组进行了平均,所得出的解释也就不那么明晰了。

    因此,他们得出的指数结论不同于
    (本章未完,请翻页)